文章来源:淘论文网   发布者: 毕业设计   浏览量: 24



还可以点击去查询以下关键词:
[金属]    [硅化]    [工艺技术]    [研究]    [0.5μm COMS金属硅化物工艺技术研究1]   

0.5μm COMS金属硅化物工艺技术研究1

价格:300
付款请加财务QQ:1532601705

浏次数:167

页数:28

字数:23649



0.5μm CMOS金属硅化物工艺技术研究

摘要: 金属硅化物广泛用于微电子器件中的源、漏、栅极与金属电极间的接触, 是制备纳米集成电路的关键材料之一。本文对不同硅化物薄膜的特性进行了分析并对适用于0.5微米CMOS 器件的各种自对准硅化物工艺进行了讨论。
关键词: 金属硅化物;薄膜;自对准;NiSi;工艺模块;

毕业设计说明书目录
摘要.............................................................................................................................1
引言.............................................................................................................................1
第1章  金属硅化物的基础知识............................................................................ 1
   1.1 金属硅化物的概念..................................................................................... 2
   1.2 金属硅化物的性质..................................................................................... 2
   1.3  金属硅化物的应用......................................................................................2
第2章  金属硅化物的工艺特性............................................................................ 2
   2.1  钛硅化物TiSi2............................................................................................ 5
   2.2  钴硅化物CoSi2........................................................................................... 5
   2.3  镍硅化物NiSi............................................................................................. 6
   2.4  镍硅化物同钛,钴硅化物的比较..............................................................8
第3章  不同硅化物薄膜的电阻率....................................................................... 10
   3.1  常规T iSi2 薄膜的方块电阻与线宽的关系............................................ 12
   3.2   NiSi 薄膜的方块电阻与退火温度和线宽的关系................................. 12
   3.3  不同硅化物薄膜的耗硅量.........................................................................12
   3.4.  不同硅化物薄膜的热稳定性....................................................................13
第4章  稀土金属硅化物........................................................................................14
第5章  自对准硅化物(Self-Aligned Salicides)技术....................................... 15
   5.1  Salicide 工艺介绍......................................................................................16
   5.2  工艺模块流程............................................................................................ 20
   5.3  工艺模块控制要点.....................................................................................21
   5.4  工艺模块结果............................................................................................ 21
   5.5  自对准金属硅化物制备的可能问题点.....................................................23
第6章  金属硅化物的性能与缺陷监测评价....................................................... 25
   6.1  非晶界面层中的金属硅化物成核检测.................................................... 25
   6.2  金属硅化物生成检测.................................................................................25
   6.3  缺陷检测................................................................................................... 26
   6.4  热稳定性分析........................................................................................... 26
第7章  结语........................................................................................................27
参考文献................................................................................................................28

参考文献
[1] James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling. 第一版,电子工业出版社,2003.
[2] 施敏.半导体器件物理与工艺[M].第二版.赵鹤鸣,等(译).苏州:苏州大学出版社,2004.
[3] 陈星弼,张庆中.晶体管原理与设计[M].成都:电子科技大学出版社,2004.256-258.
[4] Campbell S A.微电子制造科学原理与工程技术[M].第二版.曾莹,等(译).北京:电子工业出版社,2003.
[5] Marbell M N, Cherepko S V, Madiar A, et al. An improved large signal model for harmonic-balance simulation of Si LDMOSFETs[A]. 34th Europ Microw Conf [C]. Amsterdam, The Netherlands. 2004. 225-228.
[6] Tang C W, Tong K Y. A compact large signal model of LDMOS[J]. Sol Sta Electron, 2002,46(12):2111-2115.
[7] Aarts A C T, Kloosterman W J. Compact modeling of high voltage LDMOS devices including quasi-saturation[J]. IEEE Trans Elec Dev,2006,53(4):897-902.
[8] SU J, FANG J, WU J, et al. Characterization and modeling of a 700 V single crystal diffused LDMOS device[J]. Microelectronics,2004,34(2):192-194.
[9] Yang Y, Woo Y Y, Yi J, et al. A new empirical large singnal model of Si-LDMOSFETs for high power amplifier design[J]. IEEE Trans Microwave Theory and Techniques,2001,49(9):1626-1633.
[10] Wu X-L, Chen J-N, Ke D-M, et al. A circuit micro model of high voltage LDMOS based on numerical simulation [A]. IEEE Int Workshop VLSI Design & Video Tech [C]. Suzhou, China. 2005. 90-93.
[11] HE j, ZHANG X. Analytical model of surface field distribution and breakdown voltage for RESURF LDMOS transistors[J]. Chinese J Semicond , 2001, 22(9):1102-1106.
[12] Ameen M, Hebb J. Implanter, RTP system issues for ultrashallow junction formation[J]. Sol Sta Technol,2001,44(77):77-84.
[13] 陈曦,庄奕琪,杜磊:深亚微米CMOS集成电路抗热载流子效应设计[J].微电子学,2003,33(6):509-512.
[14] VASSILEV V, LORENZINI M, GROESENEKEN G. MOSFET ESD breakdown modeling and parameter extractions in advanced CMOS technologies[J].IEEE Trans Elec Dev, 2006, 53 (9): 2108-2117.
[15] MOHAN N, KUMAR A. Modeling ESD Protection[J]. Potentials IEEE,2005,24(1):21-24.
[16] ZHOU Y-Z, CONNERNEY D, CARROLL R, et al. Modeling MOS snapback for circuit-level ESD simulation using BSIM3 and VBIC models[C] // In: Proc Sixth Int Symp Qual Elec Des. San Jose, CA,UAS.2005:537-540.
[17] LEE J-W, LI Y-M. Effective electrostatic discharge protection circuit design using novel fully silicided NMOSFETS in sub-100-nm device era[J]. IEEE Trans Nanotechnol,2006,5(3):211-215.
[18] CHATTERJEE A, DUVVURY C, BANERJEE K. New physical insight and modeling of second breakdown (It2) phenomenon in advanced ESD protection device [C] // Int Elec Dev Meet. Washington DC,USA.2005:195-198.
[19] KER M-D, LIN K-H. Double snapback characteristics in high-voltage NMOSFETS and the impact to on-chip ESD protection design [J]. IEEE Elec Dev Lett,2004,25(9):640-642.
[20] JIAO C, YU Z-P. A robust novel technique for SPICE simulation of ESD snapback characteristic[C]//The 8th Int Conf Sol Sta and Integr Circ Technol.Shanghai,China.2006:121-124.
[21] Thompson S E, Armstrong M, Auth C, et al. A 90nm logic technology featuring strained-silicon[J].IEEE Trans Elec Dev,2004,51(11):1790-1979.
[22] Kim Y S, Mori T, Hayami Y, et al. A highly robust SiGe source drain technology realized by disposable sidewall spacer (DSW) for 65nm node and beyond [A]. Proc ESSDERC[C]. Washington D C,USA.2005.305-308.
[23]  W.Lukaszek1, J. Shields, Electron Shading Effects During Oxide Etching in Uniform and Non-Uniform Plasmas, 7th International Symposium on Plasma- and Process-Induced Damage[DB/OL], Maui, Hawaii, 2002
[24] N.艾罗拉:用于VLSI模拟的小尺寸MOS器件模型(理论与实践)第一版,张兴,李映雪等译,科学出版社,1999.
[25] Giuseppe V. Power amplifiers for microwaves and RF applications with LDMOS transistors[J]. Microwave J, 2006, 40(6):98-102.
[26] B.Jzyant Baliga, “Power integrated circuits-a brief overview” IEEE Trans. Electron Devices, vol. ED-33, NO.12, December 1986.
[27] S.A.Buhler, D.L.Heald, R.R.Ronen, T. Gannon and P.Elkins, “Integrated high-voltage/low-voltage MOS devices” IEDM Technical Digest, pp.259-262,1981.
[28] P. R.Gray and R.G.Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley and Sons, Inc: New York, 1993.
[29] Y.P. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, McGraw-Hill: New York,1996.
[30] P.Tsui, P.Gilbert, and S.Sun, “Integration of power LDMOS into a low-voltage 0.5um BiCMOS technology,” IEDM Technical. Digest, pp.27-30,1992.
[31] Ed. Wai-Kai Chen,“The VLSI Handbook”, Boca Raton, CRC Press LLC, 2000.
[32] P. M. Santos, A.P. Casimiro, M. Lança and M. I. Castro Simas, “High-Voltage Solutions in Standard CMOS Technology”, Microelectronics Journal, Vol. 33, pp. 609-617, 2002.
[33] J. A. Herrera1, J. L. Del Valle, “900 MHz band class E PA using high voltage n-channel transistors in standard CMOS technology”, 2nd International Conference on Electrical and Electronics Engineering (ICEEE) and XI Conference on Electrical Engineering (CIE 2005), September 7-9, 2005
[34] H. Ballan and M. Declercq, “High Voltage Devices and Circuits in Standard CMOS Technologies”, Netherland: Kluwer Academic Publishers, 1999.
[35]  朱炜玲 等 热载流子效应对n-MOSFETs可靠性的影响  华南理工大学学报 2003 31(7)33-36
[36] J. Park, B. Lee, D. Kim, C. Yu, and H. Yu,“RF Performance Degradation in NMOS Transistors due to Hot Carrier Effects”, IEEE Transactions on Electron Devices, vol. 147, no. 5, pp.1068, May 2000
[37] 杨谟华,方朋.”VLSI/ULSI可靠性的监测与模拟,” 电子科技导报,1998,(12):19-23.
[38]  Hirokazu Yonezuqa,Jingkun Fang,Yoshiyuki Kawakami,etc.Ratio based Hot-Carrier Degradation Modeling for Aged Timeing Simulation of Millions of Transistors Digital Circuits, IEDM Technical digest,pp:93-96,1998.
[39] BTA Technology,INC.,BTABERT Users Manual,1997.
[40] M. Saxena, S. Haldar, M. Gupta, and R.Gupta, “Physics-Based Analytical Modeling of Potential and Electrical Field Distribution in Dual Material Gate (DMG)-MOSFET for Improved Hot Electron Effect and Carrier Transport Efficiency”, IEEE Transactions on Electron Devices, vol. 49, no. 11, pp.1928, Nov 2002
[41] SILVACO International, Santa Clara, Athena User’s Manual, February 2000
[42]   W.Lukasezek, Wafer Charging Damage in IC Process Equipment[DB/OL], ECS International Semiconductor Technology Conference, Shanghai, China, 2001.
[43]   K.P.Cheung,Plasma Charging Damage[M], Great Britain, Springer, 2001.
[44]   刘之景.等离子体刻蚀加工中的器件损伤[J],仪表技术与传感器,1999(5):13-14.
[45]   赵毅,徐向明.MOS器件中的等离子体损伤[J],半导体技术,2004(8):34-37.
[46]   唐瑜,等.等离子体对90nm 工艺MOS 器件的损伤[J],半导体学报,2007(1):92-95.
[47]   朱志炜,等.等离子体工艺引起的MOSFET 栅氧化层损伤[J],固体电子学研究与进展,2003(1):126-132.
[48]   刘之景,曹继,王克逸.超薄氧化门的等离子体充电损伤机理[J],半导体技术,2002(3):63-66.
[49]   胡恒升,张敏.等离子体充电效应在薄氧化硅层产生陷阱密度的确定[J],功能材料与器件学报,2001(1):59-62.
[49] 于宗光,叶建民,王成:亚微米门阵列ASIC设计技术,电子与封装,2005,22(2):36-42.


这里还有:


还可以点击去查询:
[金属]    [硅化]    [工艺技术]    [研究]    [0.5μm COMS金属硅化物工艺技术研究1]   

请扫码加微信 微信号:sj52abcd


下载地址: http://www.taolw.com/down/9975.docx
  • 上一篇:0.5μmCOMS金属硅化物工艺技术研究2
  • 下一篇:0.5μm CMOS PCM版图设计及测试分析2